برآورد مشخصه تراکم درختان جنگل با استفاده از آنالیز زمین و شبکه عصبی مصنوعی

Authors: not saved
Abstract:

اثر متقابل بین منظر زمین و خصوصیات جنگل کاملاً ثابت شده است. بنابراین فرض قابل‌قبولی است که فاکتورهای منظر زمین در یک منطقه جنگلی در ایجاد خصوصیات جنگل نقش تعیین‌‌کننده‌ای دارند. اگرچه پژوهش‌های گذشته روابط کاملاً قطعی بین خصوصیات جنگل و عوامل محیطی را شناسایی کرده‌اند، اما تاکنون مدل مناسبی برای شرح این خصوصیات ارائه نشده است. استفاده از مدل‌های رقومی زمین و مشخصه‌های قابل استخراج از آن می‌تواند برای رسیدن به این هدف به ما کمک کند. این پژوهش سعی در بررسی امکان به‌کارگیری روش نوین شبکه عصبی مصنوعی (ANN) برای پیش‌بینی پراکنش مکانی تراکم (تعداد در هکتار) جنگل و تهیه نقشه پیوسته آن در سری یک جنگل آموزشی و پژوهشی شصت‌کلاته گرگان با استفاده از خصوصیات اولیه و ثانویه توپوگرافی دارد. خصوصیات اولیه و ثانویه توپوگرافی با استفاده از مدل رقومی زمین با دقت ارتفاعی 10 متر محاسبه گردید. نقشه موقعیت جغرافیایی قطعات نمونه که با استفاده از دستگاه GPS ثبت شده بود، در محیط GIS تهیه شد. سپس مشخصه‌های اولیه و ثانویه توپوگرافی زمین در محل این قطعات نمونه استخراج گردید. مشخصه تعداد در هکتار نیز در 252 قطعه نمونه دایره‌ای با ابعاد 10 آر از طریق شمارش تعداد درختان موجود در هر قطعه نمونه و محاسبه آن در هکتار، تعیین گردید. رابطه بین تعداد در هکتار جنگل و خصوصیات توپوگرافی با استفاده از دو شبکه عصبی مصنوعی RBF و MLP مورد تجزیه و تحلیل قرار گرفت. نتایج نشان داد که شبکه تابع پایه شعاعیRBF نسبت به شبکه MLP دارای نتایج دقیق‌تری است. علاوه‌بر آن، آنالیز رگرسیون خطی برای مقایسه نتایج آن با مدل‌های  ANNانجام گردید. نتایج نشان‌دهنده توانایی شبکه عصبی در پیش‌بینی تعداد در هکتار بود و نیز نشان داد که این تکنیک می‌تواند 65 درصد تغییرات تعداد در هکتار جنگل را با استفاده از خصوصیات توپوگرافی پیش‌بینی نماید.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

کاربرد مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در برآورد تراکم جنگل در جنگل-های باغان مریوان

مطالعه و مدل‌سازی ویژگی‌های کمی جنگل به‌منظور هدایت اکوسیستم به‌سوی اهداف ایده‌آل و اجرای اقدامات حفاظتی و احیایی از اقدامات مهم به شمار می‌آید. در پژوهش پیش‌رو برآورد مشخصه‌های تعداد در هکتار درختان و تاج‌پوشش جنگل که معرف تراکم در اکوسیستم طبیعی جنگل می‌باشند، با استفاده از مدل رگرسیون خطی چندگانه و مدل شبکه‌ عصبی مصنوعی، به کمک داده‌های توپوگرافی، خاکشناسی، اقلیمی و استفاده از داده‌های سنجش‌...

full text

پایش تغییرپذیری فرآیندهای چند مشخصه وصفی و متغیر با استفاده از شبکه عصبی مصنوعی

امروزه در برخی محیط‏های تولیدییا خدماتی، کیفیت محصول یا عملکرد فرآیند به وسیله ترکیبی از مشخصه‏های کیفی متغیر و وصفی همبسته توصیف می‏گردد. بر اساس آخرین اطلاعات مؤلفان، تا کنون هیچ روشی برای پایش ماتریس واریانس- کوواریانس این گونه فرآیندها ارائه نشده است. در این مقاله، یک شبکه عصبی مصنوعی برای پایش تغییرپذیری یک فرآیند چند مشخصه وصفی و متغیر ارائه شده است. شبکه ارائه شده نه تنها قادر به کشف وضع...

full text

برآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال

امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاک­ها ایفا می­کند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمان­بر است و هم اطلاعات چندان دقیقی را به دست نمی­دهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روش­ها ارجحیت داده می­شود. در این تحقیق سعی بر آن شد با استفاده از تکنیک­های سنجش از د...

full text

مقایسه دو روش شبکه عصبی مصنوعی و آنالیز رگرسیون در پیش بینی و برآورد حجم مقطوعات درختان در جنگل آموزشی-پژوهشی خیرود نوشهر

استفاده از مدل­های تجربی آماری از روش ­های کاربردی رایج، میان مدیران منابع جنگلی است. تحلیل رگرسیون نیز از روش‌های آماری بوده که می­ تواند برای برآورد حجم استفاده گردد. این روش نیازمند پیش ­فرض و دارای محدودیت­هایی مانند نرمال بودن توزیع داده­ ها، عدم رابطه هم خطی، یکسان بودن واریانس خطاها است. استفاده از روش­ های جدید مثل شبکه­ های عصبی مصنوعی، دارای محدودیت های مذکور نیست. در این بررسی هدف مق...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 4

pages  25- 42

publication date 2012-07-23

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023